In this paper we present an asymptotic analysis of the three-dimensional problem for a thin linearly elastic cantilever with rectangular cross-section ωε of sides ε and ε^2, as ε goes to zero. Under suitable assumptions on the given loads, we show that the three-dimensional problem converges in a variational sense to the classical one-dimensionalmodel for extension, flexure and torsion of thin-walled beams.

Thin-walled beams: the case of the rectangular cross-section

FREDDI, Lorenzo;MORASSI, Antonino;
2004-01-01

Abstract

In this paper we present an asymptotic analysis of the three-dimensional problem for a thin linearly elastic cantilever with rectangular cross-section ωε of sides ε and ε^2, as ε goes to zero. Under suitable assumptions on the given loads, we show that the three-dimensional problem converges in a variational sense to the classical one-dimensionalmodel for extension, flexure and torsion of thin-walled beams.
File in questo prodotto:
File Dimensione Formato  
FREDDI-MORASSI-PARONI_2004(5)_JOE_Thin_walled_beams@2005-03-02T14;11;52.pdf

non disponibili

Tipologia: Altro materiale allegato
Licenza: Non pubblico
Dimensione 336.89 kB
Formato Adobe PDF
336.89 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11390/849698
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 27
  • ???jsp.display-item.citation.isi??? 27
social impact