We introduce a categorical closure operator g in the category of topological abelian groups (and continuous homomorphisms) as a Galois closure with respect to an appropriate Galois correspondence defined by means of the Pontryagin dual of the underlying group.We prove that a topological abelian group G is maximally almost periodicif and only if every cyclicsubgroup of G is g-closed. This generalizes a property characterizing the circle group from (Studia Sci. Math. Hungar. 38 (2001) 97–113, A characterization of the circle group and the p-adicinte gers via sequential limit laws, preprint), and answers an appropriate version of a question posed in (A characterization of the circle group and the p-adicinte gers via sequential limit laws, preprint).

A characterization of the MAP abelian groups

DIKRANJAN, Dikran;
2005-01-01

Abstract

We introduce a categorical closure operator g in the category of topological abelian groups (and continuous homomorphisms) as a Galois closure with respect to an appropriate Galois correspondence defined by means of the Pontryagin dual of the underlying group.We prove that a topological abelian group G is maximally almost periodicif and only if every cyclicsubgroup of G is g-closed. This generalizes a property characterizing the circle group from (Studia Sci. Math. Hungar. 38 (2001) 97–113, A characterization of the circle group and the p-adicinte gers via sequential limit laws, preprint), and answers an appropriate version of a question posed in (A characterization of the circle group and the p-adicinte gers via sequential limit laws, preprint).
File in questo prodotto:
File Dimensione Formato  
MAP.pdf

non disponibili

Tipologia: Altro materiale allegato
Licenza: Non pubblico
Dimensione 288.01 kB
Formato Adobe PDF
288.01 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11390/851072
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 43
  • ???jsp.display-item.citation.isi??? 44
social impact