Given a regular function H: ℝ^3 → ℝ, we look for H-bubbles, that is, regular surfaces in R^3 parametrized on the sphere S^2, with mean curvature H at every point. Here we study the case of H(u) = H_0 + εH_1(u) =: H_ε(u), where H_0 is a nonzero constant, ε is the smallness parameter, and H_1 is any C^2-function. We prove that if p̄ ∈ ℝ^3 is a "good" stationary point for a suitable Melnikov-type function Γ, then for |ε| small there exists an H_ε-bubble ω_ε that converges to a sphere of radius 1/ |H_0| centered at at p̄, as ε → 0.

H-bubbles in a perturbative setting: The finite-dimensional reduction method

MUSINA, Roberta
2004-01-01

Abstract

Given a regular function H: ℝ^3 → ℝ, we look for H-bubbles, that is, regular surfaces in R^3 parametrized on the sphere S^2, with mean curvature H at every point. Here we study the case of H(u) = H_0 + εH_1(u) =: H_ε(u), where H_0 is a nonzero constant, ε is the smallness parameter, and H_1 is any C^2-function. We prove that if p̄ ∈ ℝ^3 is a "good" stationary point for a suitable Melnikov-type function Γ, then for |ε| small there exists an H_ε-bubble ω_ε that converges to a sphere of radius 1/ |H_0| centered at at p̄, as ε → 0.
File in questo prodotto:
File Dimensione Formato  
Jduke.pdf

non disponibili

Tipologia: Altro materiale allegato
Licenza: Non pubblico
Dimensione 271.29 kB
Formato Adobe PDF
271.29 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11390/851681
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 27
  • ???jsp.display-item.citation.isi??? 25
social impact