In this article we study congruences of lines in P^n, and in particular of order one. After giving general results, we obtain a complete classification in the case of P^4 in which the fundamental surface F is in fact a variety, i.e. it is integral, and the congruence is the irreducible set of the trisecant lines of F.

On first order congruences of lines in P^4 with irreducible fundamental surface

DE POI, Pietro
2005-01-01

Abstract

In this article we study congruences of lines in P^n, and in particular of order one. After giving general results, we obtain a complete classification in the case of P^4 in which the fundamental surface F is in fact a variety, i.e. it is integral, and the congruence is the irreducible set of the trisecant lines of F.
File in questo prodotto:
File Dimensione Formato  
mathnac.pdf

non disponibili

Tipologia: Altro materiale allegato
Licenza: Non pubblico
Dimensione 240.11 kB
Formato Adobe PDF
240.11 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11390/852130
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 7
social impact