We study the reverse mathematics of interval orders. We establish the logical strength of the implications between various definitions of the notion of interval order. We also consider the strength of different versions of the characterization theorem for interval orders: a partial order is an interval order if and only if it does not contain 2 \oplus 2. We also study proper interval orders and their characterization theorem: a partial order is a proper interval order if and only if it contains neither 2 \oplus 2 nor 3 \oplus 1.
Interval orders and reverse mathematics
MARCONE, Alberto Giulio
2007-01-01
Abstract
We study the reverse mathematics of interval orders. We establish the logical strength of the implications between various definitions of the notion of interval order. We also consider the strength of different versions of the characterization theorem for interval orders: a partial order is an interval order if and only if it does not contain 2 \oplus 2. We also study proper interval orders and their characterization theorem: a partial order is a proper interval order if and only if it contains neither 2 \oplus 2 nor 3 \oplus 1.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
interval NDJFL.pdf
non disponibili
Tipologia:
Altro materiale allegato
Licenza:
Non pubblico
Dimensione
227.38 kB
Formato
Adobe PDF
|
227.38 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.