A problem of Mahler on farctional parts of powers of an algebraic number is solved, namely a classification is provided of the algebraic numbers $\alpha$ such that the fractional powers of $\alpha^n$ tends to zero exponentially on a sequence of integers. A problem of Mendes France is solved, by proving that the period length of the continued fraction of the powers of a quadratic irrational tends to infinity apart trivial cases.

On the rational approximations to the powers of an algebraic number. Solution of two problems by Mahler and Mendes France

CORVAJA, Pietro;
2004-01-01

Abstract

A problem of Mahler on farctional parts of powers of an algebraic number is solved, namely a classification is provided of the algebraic numbers $\alpha$ such that the fractional powers of $\alpha^n$ tends to zero exponentially on a sequence of integers. A problem of Mendes France is solved, by proving that the period length of the continued fraction of the powers of a quadratic irrational tends to infinity apart trivial cases.
File in questo prodotto:
File Dimensione Formato  
ActaMath.pdf

non disponibili

Tipologia: Altro materiale allegato
Licenza: Non pubblico
Dimensione 199.47 kB
Formato Adobe PDF
199.47 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11390/852245
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 25
  • ???jsp.display-item.citation.isi??? 23
social impact