In this article we obtain a complete description of the congruences of lines in P^4 of order one provided that the fundamental surface F is non-reduced (and possibly reducible) at one of its generic points, and their classification under the hypothesis that (F)_red is smooth.

On first order congruences of lines in P^4 with generically non-reduced fundamental surface

DE POI, Pietro
2008-01-01

Abstract

In this article we obtain a complete description of the congruences of lines in P^4 of order one provided that the fundamental surface F is non-reduced (and possibly reducible) at one of its generic points, and their classification under the hypothesis that (F)_red is smooth.
File in questo prodotto:
File Dimensione Formato  
asian.pdf

non disponibili

Tipologia: Altro materiale allegato
Licenza: Non pubblico
Dimensione 184.85 kB
Formato Adobe PDF
184.85 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11390/853221
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact