The outstanding performances of the Al2O3 cutting tools in terms of potential cutting speed can lead to substantial economies in the machining of metallic materials. Nevertheless, their widespread use is limited by some drawbacks such as the tendency to edge chipping and to the propagation of microcracks, which can lead to premature failures. These shortcomings are due to the intrinsic low toughness of the ceramic material, which is in turn related to its characteristics non-metallic bonds. A well-recognised method of increasing the toughness of brittle materials is the introduction of surface compressive stresses, which can be obtained through a suitable lamination geometry of the tools as consequence of the different coefficients of thermal expansion (CTE) of the constituent layers. The performances of an alumina/zirconia laminated cutting tool used for machining steel have been investigated and compared to those of a non-laminated commercial alumina/zirconia cutting tool. The different wear mechanisms are explained on the basis of the different microstructures and chemical compositions. We have shown that residual compressive stresses, measured by Piezo-Spectroscopy, are effective in avoiding the microchipping on the flank zone but cannot avoid larger fractures caused by the residual porosity. (c) 2004 Elsevier B.V. All rights reserved.

Wear mechanisms and residual stresses in alumina-based laminated cutting tools

MASCHIO, Stefano;
2005-01-01

Abstract

The outstanding performances of the Al2O3 cutting tools in terms of potential cutting speed can lead to substantial economies in the machining of metallic materials. Nevertheless, their widespread use is limited by some drawbacks such as the tendency to edge chipping and to the propagation of microcracks, which can lead to premature failures. These shortcomings are due to the intrinsic low toughness of the ceramic material, which is in turn related to its characteristics non-metallic bonds. A well-recognised method of increasing the toughness of brittle materials is the introduction of surface compressive stresses, which can be obtained through a suitable lamination geometry of the tools as consequence of the different coefficients of thermal expansion (CTE) of the constituent layers. The performances of an alumina/zirconia laminated cutting tool used for machining steel have been investigated and compared to those of a non-laminated commercial alumina/zirconia cutting tool. The different wear mechanisms are explained on the basis of the different microstructures and chemical compositions. We have shown that residual compressive stresses, measured by Piezo-Spectroscopy, are effective in avoiding the microchipping on the flank zone but cannot avoid larger fractures caused by the residual porosity. (c) 2004 Elsevier B.V. All rights reserved.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11390/853352
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 9
social impact