The existence is proved of two new families of sextic threefolds in P^5, which are not quadratically normal. These threefolds arise naturally in the realm of first order congruences of lines as focal loci and in the study of the completely exceptional Monge-Ampère equations. One of these families comes from a smooth congruence of multidegree (1, 3, 3) which is a smooth Fano fourfold of index two and genus 9.

Congruences of lines in P^5, quadratic normality, and completely exceptional Monge–Ampère equations

DE POI, Pietro;
2008-01-01

Abstract

The existence is proved of two new families of sextic threefolds in P^5, which are not quadratically normal. These threefolds arise naturally in the realm of first order congruences of lines as focal loci and in the study of the completely exceptional Monge-Ampère equations. One of these families comes from a smooth congruence of multidegree (1, 3, 3) which is a smooth Fano fourfold of index two and genus 9.
File in questo prodotto:
File Dimensione Formato  
geoded.pdf

non disponibili

Tipologia: Altro materiale allegato
Licenza: Non pubblico
Dimensione 248.63 kB
Formato Adobe PDF
248.63 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11390/853935
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 10
social impact