Visual recognition of human bodies is more difficult for upside down than upright presentations. This body inversion effect implies that body perception relies on configural rather than local processing. Although neuroimaging studies indicate that the visual processing of human bodies engages a large fronto-temporo-parietal network, information about the neural underpinnings of configural body processing is meager. Here, we used repetitive transcranial magnetic stimulation (rTMS) to study the causal role of premotor, visual, and parietal areas in configural processing of human bodies. Eighteen participants performed a delayed matching-to-sample task with upright or inverted static body postures. Event-related, dual-pulse rTMS was applied 150 ms after the sample stimulus onset, over left ventral premotor cortex (vPMc), right extrastriate body area (EBA), and right superior parietal lobe (SPL) and, as a control site, over the right primary visual cortex (V1). Interfering stimulation of vPMc significantly reduced accuracy of matching judgments for upright bodies. In contrast, EBA rTMS significantly reduced accuracy for inverted but not for upright bodies. Furthermore, a significant body inversion effect was observed after interfering stimulation of EBA and V1 but not of vPMc and SPL. These results demonstrate an active contribution of the fronto-parietal mirror network to configural processing of bodies and suggest a novel, embodied aspect of visual perception. In contrast, the local processing of the body, possibly based on the form of individual body parts instead of on the whole body unit, appears to depend on EBA. Therefore, we propose two distinct cortical routes for the visual processing of human bodies.

Transcranial magnetic stimulation reveals two cortical pathways for visual body processing

URGESI, Cosimo;
2007-01-01

Abstract

Visual recognition of human bodies is more difficult for upside down than upright presentations. This body inversion effect implies that body perception relies on configural rather than local processing. Although neuroimaging studies indicate that the visual processing of human bodies engages a large fronto-temporo-parietal network, information about the neural underpinnings of configural body processing is meager. Here, we used repetitive transcranial magnetic stimulation (rTMS) to study the causal role of premotor, visual, and parietal areas in configural processing of human bodies. Eighteen participants performed a delayed matching-to-sample task with upright or inverted static body postures. Event-related, dual-pulse rTMS was applied 150 ms after the sample stimulus onset, over left ventral premotor cortex (vPMc), right extrastriate body area (EBA), and right superior parietal lobe (SPL) and, as a control site, over the right primary visual cortex (V1). Interfering stimulation of vPMc significantly reduced accuracy of matching judgments for upright bodies. In contrast, EBA rTMS significantly reduced accuracy for inverted but not for upright bodies. Furthermore, a significant body inversion effect was observed after interfering stimulation of EBA and V1 but not of vPMc and SPL. These results demonstrate an active contribution of the fronto-parietal mirror network to configural processing of bodies and suggest a novel, embodied aspect of visual perception. In contrast, the local processing of the body, possibly based on the form of individual body parts instead of on the whole body unit, appears to depend on EBA. Therefore, we propose two distinct cortical routes for the visual processing of human bodies.
File in questo prodotto:
File Dimensione Formato  
2007_JN_Urgesi et al..pdf

non disponibili

Tipologia: Altro materiale allegato
Licenza: Non pubblico
Dimensione 326.07 kB
Formato Adobe PDF
326.07 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11390/854337
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 173
  • ???jsp.display-item.citation.isi??? 160
social impact