The formation and removal of the carbonaceous deposits formed by n-butane and liquid hydrocarbons, such as n-decane and proprietary light and heavy naphthas, between 973 and 1073 K on YSZ and ceria–YSZ, has been studied to determine conditions for stable operation of direct-utilization SOFC. First, it is shown that deactivation of SOFC with Cu–ceria–YSZ anodes operating on undiluted n-decane, a mixture of 80% n-decane and 20% toluene, or light naphtha at temperatures above 973 K is due to filling of the pores with polyaromatic compounds formed by gas-phase, free-radical reactions. Formation of these compounds occurs at a negligible rate below 973 K but increases rapidly above this temperature. The rate of formation also depends on the residence time of the fuel in the anode compartment. Because steam does not participate in the gas-phase reactions, carbonaceous deposits could form even at a H2O:C ratio of 1.5, a value greater than the stability threshold predicted by thermodynamic calculations. Temperature programmed oxidation (TPO) measurements with 20% H2O in He demonstrated that carbon deposits formed in pure YSZ were unreactive below 1073 K, while deposits formed on ceria-YSZ could be removed at temperatures as low as 923 K. Based on these results, we discuss strategies for avoiding carbon formation during the operation of direct-utilization anodes on oil-based liquid fuels.

A STUDY OF CARBON FORMATION AND PREVENTION IN HYDROCARBON-FUELED SOFC

BOARO, Marta;
2006-01-01

Abstract

The formation and removal of the carbonaceous deposits formed by n-butane and liquid hydrocarbons, such as n-decane and proprietary light and heavy naphthas, between 973 and 1073 K on YSZ and ceria–YSZ, has been studied to determine conditions for stable operation of direct-utilization SOFC. First, it is shown that deactivation of SOFC with Cu–ceria–YSZ anodes operating on undiluted n-decane, a mixture of 80% n-decane and 20% toluene, or light naphtha at temperatures above 973 K is due to filling of the pores with polyaromatic compounds formed by gas-phase, free-radical reactions. Formation of these compounds occurs at a negligible rate below 973 K but increases rapidly above this temperature. The rate of formation also depends on the residence time of the fuel in the anode compartment. Because steam does not participate in the gas-phase reactions, carbonaceous deposits could form even at a H2O:C ratio of 1.5, a value greater than the stability threshold predicted by thermodynamic calculations. Temperature programmed oxidation (TPO) measurements with 20% H2O in He demonstrated that carbon deposits formed in pure YSZ were unreactive below 1073 K, while deposits formed on ceria-YSZ could be removed at temperatures as low as 923 K. Based on these results, we discuss strategies for avoiding carbon formation during the operation of direct-utilization anodes on oil-based liquid fuels.
File in questo prodotto:
File Dimensione Formato  
A study of carbon formation and prevention in hydrocarbons fueled SOFC.pdf

non disponibili

Tipologia: Altro materiale allegato
Licenza: Non pubblico
Dimensione 428.33 kB
Formato Adobe PDF
428.33 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11390/855484
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 168
  • ???jsp.display-item.citation.isi??? 157
social impact