Generalizing a result of Pourchet, we show that, if $\alpha,\beta$ are power sums over $Q$ satisfying suitable necessary assumptions, the length of the continued fraction for $\alpha(n)/\beta(n)$ tends to infinity as $n$ tends to infinity.
On the length of the continued fraction for values of quotients of power sums
CORVAJA, Pietro;
2005-01-01
Abstract
Generalizing a result of Pourchet, we show that, if $\alpha,\beta$ are power sums over $Q$ satisfying suitable necessary assumptions, the length of the continued fraction for $\alpha(n)/\beta(n)$ tends to infinity as $n$ tends to infinity.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.