We introduce a relativized notion of (semi)normalcy for categories that come equipped with a proper stable factorization system, and we use radicals (in the sense of module theory) and normal closure operators in order to study torsion theories in such categories. Our results generalize and complement recent studies in the realm of semi-abelian and, in part, homological categories. In particular, we characterize both, torsion-free and torsion classes, in terms of their closure under extensions. We pay particular attention to the homological and, for our purposes more importantly, normal categories of topological algebra, such as the category of topological groups. But our applications go far beyond the realm of these types of categories, as they include, for example, the normal, but non-homological category of pointed topological spaces, which is in fact a rich supplier for radicals of topological groups.

Torsion theories and radicals in normal categories

DIKRANJAN, Dikran;
2006-01-01

Abstract

We introduce a relativized notion of (semi)normalcy for categories that come equipped with a proper stable factorization system, and we use radicals (in the sense of module theory) and normal closure operators in order to study torsion theories in such categories. Our results generalize and complement recent studies in the realm of semi-abelian and, in part, homological categories. In particular, we characterize both, torsion-free and torsion classes, in terms of their closure under extensions. We pay particular attention to the homological and, for our purposes more importantly, normal categories of topological algebra, such as the category of topological groups. But our applications go far beyond the realm of these types of categories, as they include, for example, the normal, but non-homological category of pointed topological spaces, which is in fact a rich supplier for radicals of topological groups.
File in questo prodotto:
File Dimensione Formato  
MManuel.pdf

non disponibili

Tipologia: Altro materiale allegato
Licenza: Non pubblico
Dimensione 266.69 kB
Formato Adobe PDF
266.69 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11390/856714
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 29
  • ???jsp.display-item.citation.isi??? 33
social impact