Metallo-organic molecules with highly conjugated -electrons, like phthalocyanines (Pc’s), are widely investigated for usage in electronic and electro-optic devices. However, their weak coupling with semiconductors is an obstacle to technological applications. Here we report a first-principle theoretical study of some fundamental features of the Pc-semiconductor interaction. Our results shed light on the general problem of organic-inorganic coupling and show that an effective coupling can be achieved by a careful choice of the Pc-substrate system and the semiconductor doping. Our results also reveal a universal alignment of the Pc electronic levels to the semiconductor band gap and suggest a general procedure for designing efficiently coupled organic-inorganic systems.
Theoretical design of coupled organic-inorganic systems
GIANNOZZI, Paolo;
2008-01-01
Abstract
Metallo-organic molecules with highly conjugated -electrons, like phthalocyanines (Pc’s), are widely investigated for usage in electronic and electro-optic devices. However, their weak coupling with semiconductors is an obstacle to technological applications. Here we report a first-principle theoretical study of some fundamental features of the Pc-semiconductor interaction. Our results shed light on the general problem of organic-inorganic coupling and show that an effective coupling can be achieved by a careful choice of the Pc-substrate system and the semiconductor doping. Our results also reveal a universal alignment of the Pc electronic levels to the semiconductor band gap and suggest a general procedure for designing efficiently coupled organic-inorganic systems.File | Dimensione | Formato | |
---|---|---|---|
PRL101_126805_2008.pdf
non disponibili
Tipologia:
Altro materiale allegato
Licenza:
Non pubblico
Dimensione
1.46 MB
Formato
Adobe PDF
|
1.46 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.