White lupin (Lupinus albus L. cv. Amiga) reacts to phosphate deficiency by producing cluster roots which exude large amounts of organic acids. The detailed knowledge of the excretion physiology of the different root parts makes it a good model plant to study plant-bacteria interaction. Since the effect of the organic acid exudation by cluster roots on the rhizosphere microflora is still poorly understood, we investigated the abundance, diversity and functions of bacteria associated with the cluster roots of white lupin, with special emphasis on the influence of root proximity ( comparing root, rhizosphere soil and bulk soil fractions) and cluster root growth stages, which are characterized by different excretion activities. Plants were grown for five weeks in microcosms, in the presence of low phosphate concentrations, on acidic sand inoculated with a soil suspension from a lupin field. Plate counts showed that bacterial abundance decreased at the stage where the cluster root excretes high amounts of citrate and protons. In vitro tests on isolates showed that the frequencies of auxin producers were highest in juvenile and mature cluster roots and significantly decreased in senescent cluster roots. However, no significant difference in the frequency of auxin producers was found between cluster and non cluster roots. The diversity and structure of bacterial communities were investigated by DGGE of 16S rDNA and 16S rRNA. The diversity and community structure were mostly influenced by root proximity and, to a lesser extent, by cluster root stage. The richness of bacterial communities decreased with root proximity, whereas the proportion of active populations increased. The high citrate and proton excretion occurring at the mature stage of cluster roots had a strong impact on the structure and richness of the bacterial communities, both in the root and in the rhizosphere soil.

Secretion activity of white lupin's cluster roots influences bacterial abundance, function and community structure

TOMASI, Nicola;
2005-01-01

Abstract

White lupin (Lupinus albus L. cv. Amiga) reacts to phosphate deficiency by producing cluster roots which exude large amounts of organic acids. The detailed knowledge of the excretion physiology of the different root parts makes it a good model plant to study plant-bacteria interaction. Since the effect of the organic acid exudation by cluster roots on the rhizosphere microflora is still poorly understood, we investigated the abundance, diversity and functions of bacteria associated with the cluster roots of white lupin, with special emphasis on the influence of root proximity ( comparing root, rhizosphere soil and bulk soil fractions) and cluster root growth stages, which are characterized by different excretion activities. Plants were grown for five weeks in microcosms, in the presence of low phosphate concentrations, on acidic sand inoculated with a soil suspension from a lupin field. Plate counts showed that bacterial abundance decreased at the stage where the cluster root excretes high amounts of citrate and protons. In vitro tests on isolates showed that the frequencies of auxin producers were highest in juvenile and mature cluster roots and significantly decreased in senescent cluster roots. However, no significant difference in the frequency of auxin producers was found between cluster and non cluster roots. The diversity and structure of bacterial communities were investigated by DGGE of 16S rDNA and 16S rRNA. The diversity and community structure were mostly influenced by root proximity and, to a lesser extent, by cluster root stage. The richness of bacterial communities decreased with root proximity, whereas the proportion of active populations increased. The high citrate and proton excretion occurring at the mature stage of cluster roots had a strong impact on the structure and richness of the bacterial communities, both in the root and in the rhizosphere soil.
File in questo prodotto:
File Dimensione Formato  
weisskopf_plantsoil2005.pdf

non disponibili

Tipologia: Altro materiale allegato
Licenza: Non pubblico
Dimensione 567.75 kB
Formato Adobe PDF
567.75 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11390/858736
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 51
  • ???jsp.display-item.citation.isi??? 47
social impact