White lupins (Lupinus albus L.) respond to phosphate deficiency by producing special root structures called cluster roots. These cluster roots secrete large amounts of carboxylates into the rhizosphere, mostly citrate and malate, which act as phosphate solubilizers and enable the plant to grow in soils with sparingly available phosphate. The success and efficiency of such a P-acquisition strategy strongly depends on the persistence and stability of the carboxylates in the soil, a parameter that is influenced to a large extent by biodegradation through rhizosphere bacteria and fungi. In this study, we show that white lupin roots use several mechanisms to reduce microbial growth. The abundance of bacteria associated with cluster roots was decreased at the mature state of the cluster roots, where a burst of organic acid excretion and a drastic pH decrease is observed. Excretion of phenolic compounds, mainly isoflavonoids, induced fungal sporulation, indicating that vegetative growth, and thus potential citrate consumption, is reduced. In addition, the activity of two antifungal cell wall-degrading enzymes, chitinase and glucanase, were highest at the stage preceding the citrate excretion. Therefore, our results suggest that white lupin has developed a complex strategy to reduce microbial degradation of the phosphate-solubilizing agents.

White lupin has developed a complex strategy to limit microbial degradation of secreted citrate required for phosphate acquisition

TOMASI, Nicola;
2006

Abstract

White lupins (Lupinus albus L.) respond to phosphate deficiency by producing special root structures called cluster roots. These cluster roots secrete large amounts of carboxylates into the rhizosphere, mostly citrate and malate, which act as phosphate solubilizers and enable the plant to grow in soils with sparingly available phosphate. The success and efficiency of such a P-acquisition strategy strongly depends on the persistence and stability of the carboxylates in the soil, a parameter that is influenced to a large extent by biodegradation through rhizosphere bacteria and fungi. In this study, we show that white lupin roots use several mechanisms to reduce microbial growth. The abundance of bacteria associated with cluster roots was decreased at the mature state of the cluster roots, where a burst of organic acid excretion and a drastic pH decrease is observed. Excretion of phenolic compounds, mainly isoflavonoids, induced fungal sporulation, indicating that vegetative growth, and thus potential citrate consumption, is reduced. In addition, the activity of two antifungal cell wall-degrading enzymes, chitinase and glucanase, were highest at the stage preceding the citrate excretion. Therefore, our results suggest that white lupin has developed a complex strategy to reduce microbial degradation of the phosphate-solubilizing agents.
File in questo prodotto:
File Dimensione Formato  
Weisskopf_PCE2006.pdf

non disponibili

Tipologia: Altro materiale allegato
Licenza: Non pubblico
Dimensione 392.54 kB
Formato Adobe PDF
392.54 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11390/858783
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 125
  • ???jsp.display-item.citation.isi??? 116
social impact