We introduce a new numerical approach, called the “singular points method”, for pricing American path-dependent options. This method, which is based on a continuous representation of the price at each node of the binomial tree, allows us to obtain very precise upper and lower bounds for the discrete binomial price. Moreover, the method provides a priori estimates of the difference between the upper and lower bounds. The algorithm is convergent and provides efficient estimates of the continuous price value. We apply the method to the case of Asian and lookback American options.

The Singular Points Binomial Method for pricing American path-dependent options

GAUDENZI, Marcellino;LEPELLERE, Maria Antonietta;ZANETTE, Antonino
2010

Abstract

We introduce a new numerical approach, called the “singular points method”, for pricing American path-dependent options. This method, which is based on a continuous representation of the price at each node of the binomial tree, allows us to obtain very precise upper and lower bounds for the discrete binomial price. Moreover, the method provides a priori estimates of the difference between the upper and lower bounds. The algorithm is convergent and provides efficient estimates of the continuous price value. We apply the method to the case of Asian and lookback American options.
File in questo prodotto:
File Dimensione Formato  
jcf.pdf

non disponibili

Tipologia: Altro materiale allegato
Licenza: Non pubblico
Dimensione 162.89 kB
Formato Adobe PDF
162.89 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
jcf[1].pdf

non disponibili

Dimensione 162.89 kB
Formato Unknown
162.89 kB Unknown   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11390/860674
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 4
social impact