Plasmopara viticola is an economically important pathogen of grapevine. Early detection of P. viticola infection can lead to improved fungicide treatment. Our study aimed to determine whether chlorophyll fluorescence (Chl-F) imaging can be used to reveal early stages of P. viticola infection under conditions similar to those occurring in commercial vineyards. Maximum (FV/FM) and effective quantum yield of photosystem II (ΦPSII) were identified as the most sensitive reporters of the infection. Heterogeneous distribution of FV/FM and ΦPSII in artificially inoculated leaves was associated with the presence of the developing mycelium 3 days before the occurrence of visible symptoms and 5 days before the release of spores. Significant changes of FV/FM and ΦPSII were spatially coincident with localised spots of inoculation across the leaf lamina. Reduction of FV/ FM was restricted to the leaf area that later yielded sporulation, while the area with significantly lower ΦPSII was larger and probably reflected the leaf parts in which photosynthesis was impaired. Our results indicate that Chl-F can be used for the early detection of P. viticola infection. Because P. viticola does not expand systemically in the host tissues and the effects of infection are localised, Chl-F imaging at high resolution is necessary to reveal the disease in the field.

Pre-symptomatic detection of Plasmopara viticola infection in grapevine leaves using chlorophyll fluorescence imaging

DI GASPERO, Gabriele;
2009-01-01

Abstract

Plasmopara viticola is an economically important pathogen of grapevine. Early detection of P. viticola infection can lead to improved fungicide treatment. Our study aimed to determine whether chlorophyll fluorescence (Chl-F) imaging can be used to reveal early stages of P. viticola infection under conditions similar to those occurring in commercial vineyards. Maximum (FV/FM) and effective quantum yield of photosystem II (ΦPSII) were identified as the most sensitive reporters of the infection. Heterogeneous distribution of FV/FM and ΦPSII in artificially inoculated leaves was associated with the presence of the developing mycelium 3 days before the occurrence of visible symptoms and 5 days before the release of spores. Significant changes of FV/FM and ΦPSII were spatially coincident with localised spots of inoculation across the leaf lamina. Reduction of FV/ FM was restricted to the leaf area that later yielded sporulation, while the area with significantly lower ΦPSII was larger and probably reflected the leaf parts in which photosynthesis was impaired. Our results indicate that Chl-F can be used for the early detection of P. viticola infection. Because P. viticola does not expand systemically in the host tissues and the effects of infection are localised, Chl-F imaging at high resolution is necessary to reveal the disease in the field.
File in questo prodotto:
File Dimensione Formato  
Csefalvay et al 2009.pdf

non disponibili

Tipologia: Altro materiale allegato
Licenza: Non pubblico
Dimensione 482.91 kB
Formato Adobe PDF
482.91 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11390/862308
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 55
  • ???jsp.display-item.citation.isi??? 47
social impact