This paper deals with the flux-weakening control of surface-mounted permanent-magnet synchronous motors, taking into account the influence of the resistive voltage drop in the stator windings, whose effect is usually neglected in similar studies. First, the motor equations exploiting the optimal torque-speed limits in the flux-weakening region are evaluated and discussed. Then, the influence of the resistive voltage drop is pointed out, highlighting its effect on the setup of the flux-weakening strategy. Hence, a simplified approach to flux-weakening motor control is presented, useful for the practical implementation in microcontrolled drives. Finally, experimental results are shown, using a position tracking application as a test case. Copyright © 2010 IEEE.
Feedforward Flux-Weakening Control of Surface-Mounted Permanent-Magnet Synchronous Motors Accounting for Resistive Voltage Drop
PETRELLA, Roberto
2010-01-01
Abstract
This paper deals with the flux-weakening control of surface-mounted permanent-magnet synchronous motors, taking into account the influence of the resistive voltage drop in the stator windings, whose effect is usually neglected in similar studies. First, the motor equations exploiting the optimal torque-speed limits in the flux-weakening region are evaluated and discussed. Then, the influence of the resistive voltage drop is pointed out, highlighting its effect on the setup of the flux-weakening strategy. Hence, a simplified approach to flux-weakening motor control is presented, useful for the practical implementation in microcontrolled drives. Finally, experimental results are shown, using a position tracking application as a test case. Copyright © 2010 IEEE.File | Dimensione | Formato | |
---|---|---|---|
[60].pdf
non disponibili
Descrizione: Articolo principale
Tipologia:
Versione Editoriale (PDF)
Licenza:
Non pubblico
Dimensione
1.4 MB
Formato
Adobe PDF
|
1.4 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.