We perform density-functional-theory calculations of electronic core levels to obtain the tellurium x-ray photoelectron spectra in the amorphous solar-energy materials CdTeO͑, x=0.2, 1, 2, and 3͒. We quantify the distribution of local tellurium environments that sum up to the total two-peak structure in the experimental spectrum. The general trend is that the more oxygen neighbors tellurium has the bigger the shift of its core-level energy. However, due to the structural complexity, the relation between the core-level shift and the number of oxygen neighbors does not obey simple rules. Hence, we show the importance of computer simulations when interpreting x-ray photoelectron spectra in this system, in particular, and amorphous oxides in general.
Quantitative local environment characterization in amorphous oxides
GIANNOZZI, Paolo
2010-01-01
Abstract
We perform density-functional-theory calculations of electronic core levels to obtain the tellurium x-ray photoelectron spectra in the amorphous solar-energy materials CdTeO͑, x=0.2, 1, 2, and 3͒. We quantify the distribution of local tellurium environments that sum up to the total two-peak structure in the experimental spectrum. The general trend is that the more oxygen neighbors tellurium has the bigger the shift of its core-level energy. However, due to the structural complexity, the relation between the core-level shift and the number of oxygen neighbors does not obey simple rules. Hence, we show the importance of computer simulations when interpreting x-ray photoelectron spectra in this system, in particular, and amorphous oxides in general.File | Dimensione | Formato | |
---|---|---|---|
PhysRevB.81.014210.pdf
non disponibili
Tipologia:
Altro materiale allegato
Licenza:
Non pubblico
Dimensione
271.01 kB
Formato
Adobe PDF
|
271.01 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.