Denote points in ℝ^k ×R^{N - k} as pairs ξ = (x,y), and assume 2 ≤ k < N. In this paper, we study the problem -Δ v=λ|x|^{-2} v+ |x|{-b}v^{p-1} in ℝ^N, x≠ 0, ν > 0 where $p > 2, b = N - pN - 2\2 and λ ≤ (k-2\2)2, the Hardy constant. We prove existence, symmetry and breaking symmetry results.
HARDY-SOBOLEV-MAZ'YA INEQUALITIES: SYMMETRY AND BREAKING SYMMETRY OF EXTREMAL FUNCTIONS
MUSINA, Roberta
2009-01-01
Abstract
Denote points in ℝ^k ×R^{N - k} as pairs ξ = (x,y), and assume 2 ≤ k < N. In this paper, we study the problem -Δ v=λ|x|^{-2} v+ |x|{-b}v^{p-1} in ℝ^N, x≠ 0, ν > 0 where $p > 2, b = N - pN - 2\2 and λ ≤ (k-2\2)2, the Hardy constant. We prove existence, symmetry and breaking symmetry results.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
CCM2009.pdf
non disponibili
Tipologia:
Altro materiale allegato
Licenza:
Non pubblico
Dimensione
266.25 kB
Formato
Adobe PDF
|
266.25 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.