Denote points in ℝ^k ×R^{N - k} as pairs ξ = (x,y), and assume 2 ≤ k < N. In this paper, we study the problem -Δ v=λ|x|^{-2} v+ |x|{-b}v^{p-1} in ℝ^N, x≠ 0, ν > 0 where $p > 2, b = N - pN - 2\2 and λ ≤ (k-2\2)2, the Hardy constant. We prove existence, symmetry and breaking symmetry results.

HARDY-SOBOLEV-MAZ'YA INEQUALITIES: SYMMETRY AND BREAKING SYMMETRY OF EXTREMAL FUNCTIONS

MUSINA, Roberta
2009-01-01

Abstract

Denote points in ℝ^k ×R^{N - k} as pairs ξ = (x,y), and assume 2 ≤ k < N. In this paper, we study the problem -Δ v=λ|x|^{-2} v+ |x|{-b}v^{p-1} in ℝ^N, x≠ 0, ν > 0 where $p > 2, b = N - pN - 2\2 and λ ≤ (k-2\2)2, the Hardy constant. We prove existence, symmetry and breaking symmetry results.
File in questo prodotto:
File Dimensione Formato  
CCM2009.pdf

non disponibili

Tipologia: Altro materiale allegato
Licenza: Non pubblico
Dimensione 266.25 kB
Formato Adobe PDF
266.25 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11390/863538
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 20
social impact