Using a topological approach we prove the existence of infinitely many periodic solutions, as well as the presence of symbolic dynamics for second order nonlinear differential equations of the form −¨u − μu + g(t)h(u) = 0 where μ > 0 is a given constant and g : R → R is a periodic positive weight function. Our main application concerns the study of the case in which h(u) is a cubic nonlinearity. Such a choice is motivated by previous investigations dealing with the nonlinear Schr¨odinger equation iψt = −1/2ψxx + g(x)|ψ|2ψ.

An example of chaos for a cubic nonlinear Schrödinger equation with periodic inhomogeneous nonlinearity

ZANOLIN, Fabio
2012-01-01

Abstract

Using a topological approach we prove the existence of infinitely many periodic solutions, as well as the presence of symbolic dynamics for second order nonlinear differential equations of the form −¨u − μu + g(t)h(u) = 0 where μ > 0 is a given constant and g : R → R is a periodic positive weight function. Our main application concerns the study of the case in which h(u) is a cubic nonlinearity. Such a choice is motivated by previous investigations dealing with the nonlinear Schr¨odinger equation iψt = −1/2ψxx + g(x)|ψ|2ψ.
File in questo prodotto:
File Dimensione Formato  
ANLS_V12N3_pg481-499.pdf

non disponibili

Tipologia: Versione Editoriale (PDF)
Licenza: Non pubblico
Dimensione 410.29 kB
Formato Adobe PDF
410.29 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11390/865322
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 3
social impact