We consider the hierarchy of the modal μ-calculus over reflexive and symmetric graphs and show that in this class the modal μ-calculus hierarchy is infinite. In the proof, a parity game over a tree is transformed into a equivalent parity game where Duplicator, when playing over the reflexive and symmetric closure of the tree, will never use loops or back edges.
On modal µ-calculus over reflexive symmetric graphs
D'AGOSTINO, Giovanna;
2013-01-01
Abstract
We consider the hierarchy of the modal μ-calculus over reflexive and symmetric graphs and show that in this class the modal μ-calculus hierarchy is infinite. In the proof, a parity game over a tree is transformed into a equivalent parity game where Duplicator, when playing over the reflexive and symmetric closure of the tree, will never use loops or back edges.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
JLC_reflSymm_online.pdf
non disponibili
Tipologia:
Documento in Post-print
Licenza:
Non pubblico
Dimensione
302.79 kB
Formato
Adobe PDF
|
302.79 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.