Let k: ℂ → ℝ be a smooth given function. A k-loop is a closed curve u in ℂ having prescribed curvature k(p) at every point p Ie ∈ u. We use variational methods to provide sufficient conditions for the existence of k-loops. Then we show that a breaking symmetry phenomenon may produce multiple k-loops, in particular when k is radially symmetric and somewhere increasing. If k > 0 is radially symmetric and non-increasing, we prove that any embedded k-loop is a circle; that is, round circles are the only convex loops in ℂ whose curvature is a non-increasing function of the Euclidean distance from a fixed point. The result is sharp, as there exist radially increasing curvatures k > 0 which have embedded k-loops that are not circles.

PLANAR LOOPS WITH PRESCRIBED CURVATURE: EXISTENCE, MULTIPLICITY AND UNIQUENESS RESULTS

MUSINA, Roberta
2011-01-01

Abstract

Let k: ℂ → ℝ be a smooth given function. A k-loop is a closed curve u in ℂ having prescribed curvature k(p) at every point p Ie ∈ u. We use variational methods to provide sufficient conditions for the existence of k-loops. Then we show that a breaking symmetry phenomenon may produce multiple k-loops, in particular when k is radially symmetric and somewhere increasing. If k > 0 is radially symmetric and non-increasing, we prove that any embedded k-loop is a circle; that is, round circles are the only convex loops in ℂ whose curvature is a non-increasing function of the Euclidean distance from a fixed point. The result is sharp, as there exist radially increasing curvatures k > 0 which have embedded k-loops that are not circles.
File in questo prodotto:
File Dimensione Formato  
2011_Loops.pdf

non disponibili

Tipologia: Altro materiale allegato
Licenza: Non pubblico
Dimensione 245.09 kB
Formato Adobe PDF
245.09 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11390/866319
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 6
social impact