Let k: ℂ → ℝ be a smooth given function. A k-loop is a closed curve u in ℂ having prescribed curvature k(p) at every point p Ie ∈ u. We use variational methods to provide sufficient conditions for the existence of k-loops. Then we show that a breaking symmetry phenomenon may produce multiple k-loops, in particular when k is radially symmetric and somewhere increasing. If k > 0 is radially symmetric and non-increasing, we prove that any embedded k-loop is a circle; that is, round circles are the only convex loops in ℂ whose curvature is a non-increasing function of the Euclidean distance from a fixed point. The result is sharp, as there exist radially increasing curvatures k > 0 which have embedded k-loops that are not circles.
PLANAR LOOPS WITH PRESCRIBED CURVATURE: EXISTENCE, MULTIPLICITY AND UNIQUENESS RESULTS
MUSINA, Roberta
2011-01-01
Abstract
Let k: ℂ → ℝ be a smooth given function. A k-loop is a closed curve u in ℂ having prescribed curvature k(p) at every point p Ie ∈ u. We use variational methods to provide sufficient conditions for the existence of k-loops. Then we show that a breaking symmetry phenomenon may produce multiple k-loops, in particular when k is radially symmetric and somewhere increasing. If k > 0 is radially symmetric and non-increasing, we prove that any embedded k-loop is a circle; that is, round circles are the only convex loops in ℂ whose curvature is a non-increasing function of the Euclidean distance from a fixed point. The result is sharp, as there exist radially increasing curvatures k > 0 which have embedded k-loops that are not circles.File | Dimensione | Formato | |
---|---|---|---|
2011_Loops.pdf
non disponibili
Tipologia:
Altro materiale allegato
Licenza:
Non pubblico
Dimensione
245.09 kB
Formato
Adobe PDF
|
245.09 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.