Ice roughness, which has a major influence on in-flight icing heat transfer and, hence, ice shapes, is generally input from empirical correlations to numerical simulations. It is given as uniform in space, while sometimes being varied in time. In this paper, a predictive model for roughness evolution in both space and time during in-flight icing is presented. The distribution is determined mathematically via a Lagrangian model that accounts for the stochastic process of bead nucleation, growth, and coalescence into moving droplets and/or rivulets and/or water film. This general model matches well the spatial and temporal roughness distributions observed in icing tunnel experiments and is embedded in FENSAP-ICE, extending its applicability outside the range of airfoil types for which correlations exist. Thus, an additional important step has been taken toward removing another empirical aspect of in-flight icing simulation

FENSAP-ICE: Analytical Model for Spatial and Temporal Evolution of In-Flight Icing Roughness

Croce, Giulio;
2010-01-01

Abstract

Ice roughness, which has a major influence on in-flight icing heat transfer and, hence, ice shapes, is generally input from empirical correlations to numerical simulations. It is given as uniform in space, while sometimes being varied in time. In this paper, a predictive model for roughness evolution in both space and time during in-flight icing is presented. The distribution is determined mathematically via a Lagrangian model that accounts for the stochastic process of bead nucleation, growth, and coalescence into moving droplets and/or rivulets and/or water film. This general model matches well the spatial and temporal roughness distributions observed in icing tunnel experiments and is embedded in FENSAP-ICE, extending its applicability outside the range of airfoil types for which correlations exist. Thus, an additional important step has been taken toward removing another empirical aspect of in-flight icing simulation
File in questo prodotto:
File Dimensione Formato  
2010-AIAA_JoA.pdf

non disponibili

Tipologia: Altro materiale allegato
Licenza: Non pubblico
Dimensione 3.23 MB
Formato Adobe PDF
3.23 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11390/866604
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 44
  • ???jsp.display-item.citation.isi??? 26
social impact