For φ an increasing homeomorphism from R onto R , and f ∈ C ( R ) , we consider the problem ( φ ( u ′ )) ′ + f ( u ) = 0 , t ∈ (0 ,L ) , u (0) = 0 = u ( L ) . The aim is to study multiplicity of solutions by means of some gen- eralized Pseudo Fuˇc ́ık spectrum (at infinity, or at zero). N ew insights that lead to a very precise counting of solutions are obtaine d by split- ting these spectra into two parts, called Positive Pseudo Fu ˇc ́ık Spectrum (PPFS) and Negative Pseudo Fuˇc ́ık Spectrum (NPFS) (at infin ity, or at zero, respectively), in this form we can discuss separate ly the two cases u ′ (0) > 0 and u ′ (0) < 0 .

Splitting the Fucík Spectrum and the Number of Solutions to a Quasilinear ODE

ZANOLIN, Fabio
2011-01-01

Abstract

For φ an increasing homeomorphism from R onto R , and f ∈ C ( R ) , we consider the problem ( φ ( u ′ )) ′ + f ( u ) = 0 , t ∈ (0 ,L ) , u (0) = 0 = u ( L ) . The aim is to study multiplicity of solutions by means of some gen- eralized Pseudo Fuˇc ́ık spectrum (at infinity, or at zero). N ew insights that lead to a very precise counting of solutions are obtaine d by split- ting these spectra into two parts, called Positive Pseudo Fu ˇc ́ık Spectrum (PPFS) and Negative Pseudo Fuˇc ́ık Spectrum (NPFS) (at infin ity, or at zero, respectively), in this form we can discuss separate ly the two cases u ′ (0) > 0 and u ′ (0) < 0 .
File in questo prodotto:
File Dimensione Formato  
070.pdf

non disponibili

Tipologia: Versione Editoriale (PDF)
Licenza: Non pubblico
Dimensione 361.93 kB
Formato Adobe PDF
361.93 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11390/867050
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? ND
social impact