The vibration of a structure can be controlled using either a passive tuned mass damper or using an active vibration control system. In this paper, the design of a multifunctional system is discussed, which uses an inertial actuator as both a tuned mass damper and as an element in a velocity feedback control loop. The natural frequency of the actuator would normally need to be well below that of the structure under control to give a stable velocity feedback controller, whereas it needs to be close to the natural frequency of a dominant structural resonance to act as an effective tuned mass damper. A compensator is used in the feedback controller here to allow stable feedback operation even when the actuator natural frequency is close to that of a structural mode. A practical example of such a compensator is described for a small inertial actuator, which is then used to actively control the vibrations both on a panel and on a beam. The influence of the actuator as a passive tuned mass damper can be clearly seen before the feedback loop is closed, and broadband damping is then additionally achieved by closing the velocity feedback loop.

Multifunctional design of inertially-actuated velocity feedback controllers

GARDONIO, Paolo
2012-01-01

Abstract

The vibration of a structure can be controlled using either a passive tuned mass damper or using an active vibration control system. In this paper, the design of a multifunctional system is discussed, which uses an inertial actuator as both a tuned mass damper and as an element in a velocity feedback control loop. The natural frequency of the actuator would normally need to be well below that of the structure under control to give a stable velocity feedback controller, whereas it needs to be close to the natural frequency of a dominant structural resonance to act as an effective tuned mass damper. A compensator is used in the feedback controller here to allow stable feedback operation even when the actuator natural frequency is close to that of a structural mode. A practical example of such a compensator is described for a small inertial actuator, which is then used to actively control the vibrations both on a panel and on a beam. The influence of the actuator as a passive tuned mass damper can be clearly seen before the feedback loop is closed, and broadband damping is then additionally achieved by closing the velocity feedback loop.
File in questo prodotto:
File Dimensione Formato  
2012_JASA_Elliott_Rohlfing_Gardonio_v131_n2_p1150-1157.pdf

non disponibili

Tipologia: Documento in Post-print
Licenza: Non pubblico
Dimensione 1.57 MB
Formato Adobe PDF
1.57 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11390/867332
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 22
  • ???jsp.display-item.citation.isi??? 14
social impact