Background: Unbalanced nutrient availability causes disequilibrated plant growth, which can result in a worsening of harvested product quality, such as high nitrate content in edible tissues. To cope with this problem, improved knowledge of the mechanisms involved in nutrient acquisition and regulation is necessary. For this purpose the responses of acquisition mechanisms of N, Fe and S were studied as a function of Fe and S availability using two corn salad cultivars grown hydroponically, considering also aspects related to N metabolism. Results: The results showed that an increase in Fe or S availability enhanced nitrate uptake and assimilation, which in turn increased biomass production of leaves with lower nitrate content. In particular, high S availability exerted a positive effect (gene expression and functionality) both on the uptake and metabolism of N and on Fe acquisition mechanisms. Conclusion: The data presented here show close interactions between N, S and Fe, highlighting that relevant improvements in yield and quality from soilless culture might also be obtained through appropriate adjustments of nutrient availability. In this respect, concerning the role of S in the acquisition mechanisms of N and Fe and in N metabolism, its level of availability should be taken into high consideration for equilibrated plant growth.

Corn salad (Valerianella locusta (L.) Laterr.) growth in a water-saving floating system as affected by iron and sulfate availability

IACUZZO, Francesco;GOTTARDI, Stefano;TOMASI, Nicola;CORTELLA, Giovanni;PINTON, Roberto;DALLA COSTA, Luisa;
2011

Abstract

Background: Unbalanced nutrient availability causes disequilibrated plant growth, which can result in a worsening of harvested product quality, such as high nitrate content in edible tissues. To cope with this problem, improved knowledge of the mechanisms involved in nutrient acquisition and regulation is necessary. For this purpose the responses of acquisition mechanisms of N, Fe and S were studied as a function of Fe and S availability using two corn salad cultivars grown hydroponically, considering also aspects related to N metabolism. Results: The results showed that an increase in Fe or S availability enhanced nitrate uptake and assimilation, which in turn increased biomass production of leaves with lower nitrate content. In particular, high S availability exerted a positive effect (gene expression and functionality) both on the uptake and metabolism of N and on Fe acquisition mechanisms. Conclusion: The data presented here show close interactions between N, S and Fe, highlighting that relevant improvements in yield and quality from soilless culture might also be obtained through appropriate adjustments of nutrient availability. In this respect, concerning the role of S in the acquisition mechanisms of N and Fe and in N metabolism, its level of availability should be taken into high consideration for equilibrated plant growth.
File in questo prodotto:
File Dimensione Formato  
iacuzzo_JSFA2011.pdf

non disponibili

Tipologia: Altro materiale allegato
Licenza: Non pubblico
Dimensione 350.14 kB
Formato Adobe PDF
350.14 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
rj18.pdf

non disponibili

Dimensione 356.58 kB
Formato Unknown
356.58 kB Unknown   Visualizza/Apri   Richiedi una copia
iacuzzo_JSFA2011.pdf

non disponibili

Dimensione 350.14 kB
Formato Unknown
350.14 kB Unknown   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11390/867662
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 15
social impact