In interaction and interface design, the representation of continuous processes often uses liquid metaphors, such as dripping or streaming. When an auditory display of such processes is required, an approach to sound-synthesis based on the physics of liquids in motion would be the most convincing, especially when real-time interaction is into play. In order to bridge the complexity of fluid-dynamic simulations with the needs of interactive sonification, we propose a multi-rate sound synthesis of liquid phenomena. Low-rate smoothed-particle hydrodynamics is used to model liquids in motion and to trigger sound-emitting events. Such events, such as solid-liquid collision, or bubble formation, are synthesized at audio rate. The proposed method is applied to the two important cases of liquid falling into a vessel, and of solid object falling into a liquid. Some example applications in interaction design are presented.
Acoustic rendering of particle-based simulation of liquids in motion
DRIOLI, Carlo;
2012-01-01
Abstract
In interaction and interface design, the representation of continuous processes often uses liquid metaphors, such as dripping or streaming. When an auditory display of such processes is required, an approach to sound-synthesis based on the physics of liquids in motion would be the most convincing, especially when real-time interaction is into play. In order to bridge the complexity of fluid-dynamic simulations with the needs of interactive sonification, we propose a multi-rate sound synthesis of liquid phenomena. Low-rate smoothed-particle hydrodynamics is used to model liquids in motion and to trigger sound-emitting events. Such events, such as solid-liquid collision, or bubble formation, are synthesized at audio rate. The proposed method is applied to the two important cases of liquid falling into a vessel, and of solid object falling into a liquid. Some example applications in interaction design are presented.File | Dimensione | Formato | |
---|---|---|---|
SpringerDrioliRocchesso10.1007_s12193-011-0063-7.pdf
non disponibili
Tipologia:
Documento in Pre-print
Licenza:
Non pubblico
Dimensione
1.78 MB
Formato
Adobe PDF
|
1.78 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.