We prove a formula that relates the Moore-Penrose inverses of two matrices A, B such that A = N^(- 1) B M^(-1) and discuss some applications, in particular to the representation of the Moore-Penrose inverse of the normalized Laplacian of a graph. The Laplacian matrix of an undirected graph is symmetric and is strictly related to its connectivity properties. However, our formula applies to asymmetric matrices, so that we can generalize our results for asymmetric Laplacians, whose importance for the study of directed graphs is increasing.

The Moore-Penrose inverse of the normalized graph Laplacian

BOZZO, Enrico
2013-01-01

Abstract

We prove a formula that relates the Moore-Penrose inverses of two matrices A, B such that A = N^(- 1) B M^(-1) and discuss some applications, in particular to the representation of the Moore-Penrose inverse of the normalized Laplacian of a graph. The Laplacian matrix of an undirected graph is symmetric and is strictly related to its connectivity properties. However, our formula applies to asymmetric matrices, so that we can generalize our results for asymmetric Laplacians, whose importance for the study of directed graphs is increasing.
File in questo prodotto:
File Dimensione Formato  
LAALaplacian.pdf

non disponibili

Tipologia: Altro materiale allegato
Licenza: Non pubblico
Dimensione 153.71 kB
Formato Adobe PDF
153.71 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11390/868581
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 14
social impact