The photorealistic acquisition of 3D objects often requires color information from digital photography to be mapped on the acquired geometry, in order to obtain a textured 3D model. This paper presents a novel fully automatic 2D/3D global registration pipeline consisting of several stages that simultaneously register the input image set on the corresponding 3D object. The first stage exploits Structure From Motion (SFM) on the image set in order to generate a sparse point cloud. During the second stage, this point cloud is aligned to the 3D object using an extension of the 4 Point Congruent Set (4PCS) algorithm for the alignment of range maps. The extension accounts for models with different scales and unknown regions of overlap. In the last processing stage a global refinement algorithm based on mutual information optimizes the color projection of the aligned photos on the 3D object, in order to obtain high quality textures. The proposed registration pipeline is general, capable of dealing with small and big objects of any shape, and robust. We present results from six real cases, evaluating the quality of the final colors mapped onto the 3D object. A comparison with a ground truth dataset is also presented.

Fully Automatic Registration of Image Sets on Approximate Geometry

FUSIELLO, Andrea;
2013-01-01

Abstract

The photorealistic acquisition of 3D objects often requires color information from digital photography to be mapped on the acquired geometry, in order to obtain a textured 3D model. This paper presents a novel fully automatic 2D/3D global registration pipeline consisting of several stages that simultaneously register the input image set on the corresponding 3D object. The first stage exploits Structure From Motion (SFM) on the image set in order to generate a sparse point cloud. During the second stage, this point cloud is aligned to the 3D object using an extension of the 4 Point Congruent Set (4PCS) algorithm for the alignment of range maps. The extension accounts for models with different scales and unknown regions of overlap. In the last processing stage a global refinement algorithm based on mutual information optimizes the color projection of the aligned photos on the 3D object, in order to obtain high quality textures. The proposed registration pipeline is general, capable of dealing with small and big objects of any shape, and robust. We present results from six real cases, evaluating the quality of the final colors mapped onto the 3D object. A comparison with a ground truth dataset is also presented.
File in questo prodotto:
File Dimensione Formato  
ijcv12-2.pdf

non disponibili

Tipologia: Documento in Post-print
Licenza: Non pubblico
Dimensione 2.96 MB
Formato Adobe PDF
2.96 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11390/868680
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 68
  • ???jsp.display-item.citation.isi??? 58
social impact