This work aims to emphasize some analogies existing between multiaxial fatigue criteria and spectral methods in the context of fatigue damage assessment for uniaxial stochastic loadings in the frequency domain. Among multiaxial criteria available in literature, attention is focused on the so-called ‘‘Projection-by-Projection’’ (PbP) approach, in which fatigue damage of a multiaxial process is computed by using a non-linear summation rule of single damage contributions of uncorrelated projected loadings. In this work the theoretical framework of PbP method will be used to provide a possible mathematical interpretation of the so-called ‘‘single moment’’ (SM) approach, a spectral method for estimating fatigue damage in uniaxial stochastic loadings that was elaborated in 1990 on a purely ‘‘empirical’’ basis. The idea here formalized is to split the spectrum of a uniaxial process into an infinite set of narrow-band spectral contributions, so to define a set of mutually uncorrelated uniaxial narrow-band stochastic processes. The analogy between the damage of a multiaxial process and that of a uniaxial process split into infinitesimal spectral components is shown. Once the formal analogy between uniaxial and multiaxial spectral methods is established, numerical simulations are used to evaluate the accuracy of SM method with reference to different types of stochastic processes with bimodal spectral density.

Analogies between spectral methods and multiaxial criteria in fatigue damage evaluation

BENASCIUTTI, Denis;
2013-01-01

Abstract

This work aims to emphasize some analogies existing between multiaxial fatigue criteria and spectral methods in the context of fatigue damage assessment for uniaxial stochastic loadings in the frequency domain. Among multiaxial criteria available in literature, attention is focused on the so-called ‘‘Projection-by-Projection’’ (PbP) approach, in which fatigue damage of a multiaxial process is computed by using a non-linear summation rule of single damage contributions of uncorrelated projected loadings. In this work the theoretical framework of PbP method will be used to provide a possible mathematical interpretation of the so-called ‘‘single moment’’ (SM) approach, a spectral method for estimating fatigue damage in uniaxial stochastic loadings that was elaborated in 1990 on a purely ‘‘empirical’’ basis. The idea here formalized is to split the spectrum of a uniaxial process into an infinite set of narrow-band spectral contributions, so to define a set of mutually uncorrelated uniaxial narrow-band stochastic processes. The analogy between the damage of a multiaxial process and that of a uniaxial process split into infinitesimal spectral components is shown. Once the formal analogy between uniaxial and multiaxial spectral methods is established, numerical simulations are used to evaluate the accuracy of SM method with reference to different types of stochastic processes with bimodal spectral density.
File in questo prodotto:
File Dimensione Formato  
2013_BENA CRIST TOVO_Analogies multiaxial_PEM_2013bis.pdf

non disponibili

Tipologia: Altro materiale allegato
Licenza: Non pubblico
Dimensione 624.59 kB
Formato Adobe PDF
624.59 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11390/869003
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 47
  • ???jsp.display-item.citation.isi??? 39
social impact