We prove the existence of multiple periodic solutions as well as the presence of complex profiles (for a certain range of the parameters) for the steady state solutions of a class of reaction diffusion equations with a FitzHugh-Nagumo cubic type nonlinearity. An application is given to a second order ODE related to a myelinated nerve axon model.

Periodic solutions for a class of second order ODEs with a Nagumo cubic type nonlinearity

ZANOLIN, Fabio
2012

Abstract

We prove the existence of multiple periodic solutions as well as the presence of complex profiles (for a certain range of the parameters) for the steady state solutions of a class of reaction diffusion equations with a FitzHugh-Nagumo cubic type nonlinearity. An application is given to a second order ODE related to a myelinated nerve axon model.
File in questo prodotto:
File Dimensione Formato  
Zanini_Zanolin_DCDS_2012.pdf

non disponibili

Tipologia: Versione Editoriale (PDF)
Licenza: Non pubblico
Dimensione 711.66 kB
Formato Adobe PDF
711.66 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11390/870041
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 2
social impact