Let X be a codimension 1 subvariety of dimension greater than 1 of a variety of minimal degree Y. If X is subcanonical with Gorenstein canonical singularities admitting a crepant resolution, then X is arithmetically Gorenstein and we characterize such subvarieties X of Y, via apolarity, as those whose apolar hypersurfaces are Fermat.
On subcanonical Gorenstein varieties and apolarity
DE POI, Pietro;ZUCCONI, Francesco
2013-01-01
Abstract
Let X be a codimension 1 subvariety of dimension greater than 1 of a variety of minimal degree Y. If X is subcanonical with Gorenstein canonical singularities admitting a crepant resolution, then X is arithmetically Gorenstein and we characterize such subvarieties X of Y, via apolarity, as those whose apolar hypersurfaces are Fermat.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
J. London Math. Soc.-2013-De Poi-819-36.pdf
non disponibili
Tipologia:
Altro materiale allegato
Licenza:
Non pubblico
Dimensione
279.6 kB
Formato
Adobe PDF
|
279.6 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.