We present a two delays SEIR epidemic model with a saturation incidence rate. One delay is the time taken by the infected individuals to become infectious (i.e. capable to infect a susceptible individual), the second delay is the time taken by an infectious individual to be removed from the infection. By iterative schemes and the comparison principle, we provide global attractivity results for both the equilibria, i.e. the disease-free equilibrium E0 and the positive equilibrium E+, which exists iff the basic reproduction number R0 is larger than one. If R0>1 we also provide a permanence result for the model solutions. Finally we prove that the two delays are harmless in the sense that, by the analysis of the characteristic equations, which result to be polynomial trascendental equations with polynomial coefficients dependent upon both delays, we confirm all the standard properties of an epidemic model: E0 is locally asymptotically stable for R0<1 and unstable for R0>1, while if R0>1 then E+ is always asymptotically stable.
An SEIR epidemic model with constant latency time and infectious period
BREDA, Dimitri;
2011-01-01
Abstract
We present a two delays SEIR epidemic model with a saturation incidence rate. One delay is the time taken by the infected individuals to become infectious (i.e. capable to infect a susceptible individual), the second delay is the time taken by an infectious individual to be removed from the infection. By iterative schemes and the comparison principle, we provide global attractivity results for both the equilibria, i.e. the disease-free equilibrium E0 and the positive equilibrium E+, which exists iff the basic reproduction number R0 is larger than one. If R0>1 we also provide a permanence result for the model solutions. Finally we prove that the two delays are harmless in the sense that, by the analysis of the characteristic equations, which result to be polynomial trascendental equations with polynomial coefficients dependent upon both delays, we confirm all the standard properties of an epidemic model: E0 is locally asymptotically stable for R0<1 and unstable for R0>1, while if R0>1 then E+ is always asymptotically stable.File | Dimensione | Formato | |
---|---|---|---|
2011_mbe_breda_beretta.pdf
non disponibili
Tipologia:
Altro materiale allegato
Licenza:
Non pubblico
Dimensione
433.56 kB
Formato
Adobe PDF
|
433.56 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.