Disruptions represent one of the main concerns for Tokamak operation, especially in view of fusion reactors, or experimental test reactors, due to the electro-mechanical loads induced by halo and eddy currents. The development of a predictive tool which allows to estimate the magnitude and spatial distribution of the halo current forces is of paramount importance in order to ensure robust vessel and in-vessel component design. With this aim, two numerical codes (CARIDDI, CAFE) have been developed, which allow to calculate the halo current path (resistive distribution) in the passive structures surrounding the plasma. The former is based on an integral formulation for the eddy currents problem particularized to the static case; the latter implements a pair of 3D FEM complementary formulations for the solution of the steady-state current conduction problem. A simplified plasma model is adopted to provide the inputs (halo current injected into the first wall). Two representative test cases (ITER symmetric and asymmetric VDEs) have been selected to cross check the results of the proposed approaches.

Numerical modeling of 3D halo current path in ITER structures

SPECOGNA, Ruben;
2013-01-01

Abstract

Disruptions represent one of the main concerns for Tokamak operation, especially in view of fusion reactors, or experimental test reactors, due to the electro-mechanical loads induced by halo and eddy currents. The development of a predictive tool which allows to estimate the magnitude and spatial distribution of the halo current forces is of paramount importance in order to ensure robust vessel and in-vessel component design. With this aim, two numerical codes (CARIDDI, CAFE) have been developed, which allow to calculate the halo current path (resistive distribution) in the passive structures surrounding the plasma. The former is based on an integral formulation for the eddy currents problem particularized to the static case; the latter implements a pair of 3D FEM complementary formulations for the solution of the steady-state current conduction problem. A simplified plasma model is adopted to provide the inputs (halo current injected into the first wall). Two representative test cases (ITER symmetric and asymmetric VDEs) have been selected to cross check the results of the proposed approaches.
File in questo prodotto:
File Dimensione Formato  
fed_halo_cafe_cariddi.pdf

non disponibili

Tipologia: Altro materiale allegato
Licenza: Non pubblico
Dimensione 1.33 MB
Formato Adobe PDF
1.33 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11390/872199
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 9
social impact