Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is a promising molecule for anti-cancer therapies. Unfortunately, cancer cells frequently acquire resistance to rhTRAIL. Various co-treatments have been proposed to overcome apoptosis resistance to TRAIL. Here we show that downregulation of the deISGylase USP18 sensitizes cancer cells to rhTRAIL, whereas, elevate levels of USP18 inhibit TRAIL-induced apoptosis, in a deISGylase independent manner. USP18 influences TRAIL signaling through the control of the IFN autocrine loop. In fact, cells with downregulated USP18 expression augment the expression of cellular TRAIL. Downregulation of cellular TRAIL abrogates the synergism between TRAIL and USP18 siRNA and also limits cell death induced by rhTRAIL. By comparing the apoptotic responsiveness to TRAIL in a panel of cancer cell lines, we have discovered a correlation between TRAIL levels and the apoptotic susceptibility to rhTRAIL, In cells expressing high levels of TRAIL-R2 susceptibility to rhTRAIL correlates with TRAIL expression. In conclusion, we propose that cellular TRAIL is an additional factor that can influence the apoptotic response to rhTRAIL.

The DeISGylase USP18 limits TRAIL-induced apoptosis through the regulation of TRAIL levels: Cellular levels of TRAIL influences responsiveness to TRAIL-induced apoptosis

BRANCOLINI, Claudio
2013-01-01

Abstract

Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is a promising molecule for anti-cancer therapies. Unfortunately, cancer cells frequently acquire resistance to rhTRAIL. Various co-treatments have been proposed to overcome apoptosis resistance to TRAIL. Here we show that downregulation of the deISGylase USP18 sensitizes cancer cells to rhTRAIL, whereas, elevate levels of USP18 inhibit TRAIL-induced apoptosis, in a deISGylase independent manner. USP18 influences TRAIL signaling through the control of the IFN autocrine loop. In fact, cells with downregulated USP18 expression augment the expression of cellular TRAIL. Downregulation of cellular TRAIL abrogates the synergism between TRAIL and USP18 siRNA and also limits cell death induced by rhTRAIL. By comparing the apoptotic responsiveness to TRAIL in a panel of cancer cell lines, we have discovered a correlation between TRAIL levels and the apoptotic susceptibility to rhTRAIL, In cells expressing high levels of TRAIL-R2 susceptibility to rhTRAIL correlates with TRAIL expression. In conclusion, we propose that cellular TRAIL is an additional factor that can influence the apoptotic response to rhTRAIL.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11390/872711
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 16
social impact