We compare two natural types of fractional Laplacians (- Δ)s, namely, the "Navier" and the "Dirichlet" ones. We show that for 0 < s < 1 their difference is positive definite and positivity preserving. Then we prove the coincidence of the Sobolev constants for these two fractional Laplacians.
On Fractional Laplacians
MUSINA, Roberta;
2014-01-01
Abstract
We compare two natural types of fractional Laplacians (- Δ)s, namely, the "Navier" and the "Dirichlet" ones. We show that for 0 < s < 1 their difference is positive definite and positivity preserving. Then we prove the coincidence of the Sobolev constants for these two fractional Laplacians.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
2013_CommPDE2.pdf
non disponibili
Tipologia:
Abstract
Licenza:
Non pubblico
Dimensione
135.98 kB
Formato
Adobe PDF
|
135.98 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.