In this work we present a finite element method for the biharmonicproblem based on the primal mixed formulation of Ciarlet and Raviart [A mixed finite element method for the biharmonic equation, in Symposium on Mathematical Aspects of Finite Elements in Partial Differential Equations, C. de Boor, ed., Academic Press, New York, 1974, pp. 125–143]. We introduce a dual mesh and a suitable approximation of the constraint that enables us to eliminate the auxiliary variable with no computational effort. Thus, the discrete problem turns to be governed by a system of linear equations with symmetric and positive definite coefficients and can be solved by classical algorithms. The construction of the stiffness matrix is obtained by using Courant triangles and can be done with great efficiency.
An unconstrained mixed method for the biharmonic problem
DAVINI, Cesare;PITACCO, Igino
2000-01-01
Abstract
In this work we present a finite element method for the biharmonicproblem based on the primal mixed formulation of Ciarlet and Raviart [A mixed finite element method for the biharmonic equation, in Symposium on Mathematical Aspects of Finite Elements in Partial Differential Equations, C. de Boor, ed., Academic Press, New York, 1974, pp. 125–143]. We introduce a dual mesh and a suitable approximation of the constraint that enables us to eliminate the auxiliary variable with no computational effort. Thus, the discrete problem turns to be governed by a system of linear equations with symmetric and positive definite coefficients and can be solved by classical algorithms. The construction of the stiffness matrix is obtained by using Courant triangles and can be done with great efficiency.File | Dimensione | Formato | |
---|---|---|---|
35977.pdf
non disponibili
Tipologia:
Altro materiale allegato
Licenza:
Non pubblico
Dimensione
251.39 kB
Formato
Adobe PDF
|
251.39 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.