The ability of Fe-deficient cucumber plants to use iron complexed to a water-extractable humic substances fraction (WEHS), was investigated. Seven-day-old Fe-deficient plants were transferred to a nutrient solution supplemented daily for 5 days with 0.2 mu M Fe as Fe-WEHS (5 mu g org. C mL(-1)), Fe-EDTA, Fe-citrate or FeCl(3). These treatments all allowed re-greening of the leaf tissue, and partial recovery of dry matter accumulation, chlorophyll and iron contents. However, the recovery was faster in plants supplied with Fe-WEHS and was already evident 48 h after Fe supply. The addition of 0.2 mu M Fe to the nutrient solution caused also a partial recovery of the dry matter and iron accumulation in roots of Fe-deficient cucumber plants, particularly in those supplied with Fe-WEHS. The addition of WEHS alone (5 mu g org. C mL(-1), 0.04 mu M Fe) to the nutrient solution slightly but significantly increased iron and chlorophyll contents in leaves of Fe-deficient plants; in these plants, dry matter accumulation in leaves and roots was comparable or even higher than that measured in plants treated with Fe-citrate or FeCl(3). After addition of the different iron sources for 5 days to Fe-deficient roots, morphological modifications (proliferation of lateral roots, increase in the diameter of the sub-apical zones and amplified root-hair formation) and physiological responses (enhanced Fe(III)-chelate reductase and acidification of the nutrient solution) induced by Fe deficiency, were still evident, particularly in plants treated with the humic molecules. The presence of WEHS caused also a further acidification of the nutrient medium by Fe-deficient plants. The Fe-WEHS complex (1 mu M Fe) could be reduced by intact cucumber roots, at rates of reduction higher than those measured for Fe-EDTA at equimolar iron concentration. Plasma membrane vesicles, purified by two-phase partition from root microsomes of Fe-deficient plants, were also able to reduce Fe-WEHS. Results show that Fe-deficient cucumber plants can use iron complexed to water soluble humic substances, at least in part via reduction of complexed Fe(III) by the plasma membrane Fe(III)-chelate reductase of root cells. In addition, the stimulating effect of humic substances on H(+) release might be of relevance for the overall response of the plants to iron shortage. RI Cesco, Stefano/F-3088-2011

Water-extractable humic substances enhance iron deficiency responses by Fe-deficient cucumber plants

PINTON, Roberto;SANTI, Simonetta;
1999-01-01

Abstract

The ability of Fe-deficient cucumber plants to use iron complexed to a water-extractable humic substances fraction (WEHS), was investigated. Seven-day-old Fe-deficient plants were transferred to a nutrient solution supplemented daily for 5 days with 0.2 mu M Fe as Fe-WEHS (5 mu g org. C mL(-1)), Fe-EDTA, Fe-citrate or FeCl(3). These treatments all allowed re-greening of the leaf tissue, and partial recovery of dry matter accumulation, chlorophyll and iron contents. However, the recovery was faster in plants supplied with Fe-WEHS and was already evident 48 h after Fe supply. The addition of 0.2 mu M Fe to the nutrient solution caused also a partial recovery of the dry matter and iron accumulation in roots of Fe-deficient cucumber plants, particularly in those supplied with Fe-WEHS. The addition of WEHS alone (5 mu g org. C mL(-1), 0.04 mu M Fe) to the nutrient solution slightly but significantly increased iron and chlorophyll contents in leaves of Fe-deficient plants; in these plants, dry matter accumulation in leaves and roots was comparable or even higher than that measured in plants treated with Fe-citrate or FeCl(3). After addition of the different iron sources for 5 days to Fe-deficient roots, morphological modifications (proliferation of lateral roots, increase in the diameter of the sub-apical zones and amplified root-hair formation) and physiological responses (enhanced Fe(III)-chelate reductase and acidification of the nutrient solution) induced by Fe deficiency, were still evident, particularly in plants treated with the humic molecules. The presence of WEHS caused also a further acidification of the nutrient medium by Fe-deficient plants. The Fe-WEHS complex (1 mu M Fe) could be reduced by intact cucumber roots, at rates of reduction higher than those measured for Fe-EDTA at equimolar iron concentration. Plasma membrane vesicles, purified by two-phase partition from root microsomes of Fe-deficient plants, were also able to reduce Fe-WEHS. Results show that Fe-deficient cucumber plants can use iron complexed to water soluble humic substances, at least in part via reduction of complexed Fe(III) by the plasma membrane Fe(III)-chelate reductase of root cells. In addition, the stimulating effect of humic substances on H(+) release might be of relevance for the overall response of the plants to iron shortage. RI Cesco, Stefano/F-3088-2011
File in questo prodotto:
File Dimensione Formato  
PintonP&S1999.pdf

non disponibili

Tipologia: Altro materiale allegato
Licenza: Non pubblico
Dimensione 359.38 kB
Formato Adobe PDF
359.38 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11390/877274
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 99
  • ???jsp.display-item.citation.isi??? 85
social impact