Melatonin (MEL) may counteract tumors through a direct oncostatic role. MEL is also an antistress agent with immunoenhancing properties against tumors due to a suppressive role of MEL on corticosterone release. Rotational stress (RS) (spatial disorientation) facilitates metastasis progression in mice. Also, MEL counteracts tumors because of its influence on immune responses via the metabolic zinc pool, which, is reduced in tumors and stress. Zinc is required for normal thymic endocrine activity (i.e. thymulin) and interleukin-2 (IL-2) production. Because in vivo data is still controversial, exogenous MEL treatment (22 days in drinking water) in both intact and pinealectomized (px) mice bearing Lewis lung carcinoma leads to significant decrements of metastasis volume, restoration of the negative crude zinc balance, recovery of thymulin activity and increment of IL-2 exclusively in intact and px tumor bearing mice subjected to RS. Significant inverse correlations are found in both stressed intact and px tumor bearing mice after MEL treatment between zinc and corticosterone (r = 0.78, P < 0.01; r = 0.80, P < 0.01, respectively). Positive correlations between zinc and IL-2 (r = 0.75, P < 0.01; r = 0.73, P < 0.01, respectively) or thymulin (r = 0.75, P < 0.01; r = 0.82, P < 0.01, respectively) are observed in same models of mice. These findings suggest a MEL action to decrease metastasis mediated by a possible interplay between zinc and MEL, via corticosterone, with consequent restoration of thymic efficiency and IL-2 production. MEL as an antistress agent with immunoenhancing properties in cancer deserves further consideration.

Melatonin administration in tumor-bearing mice (intact and pinealectomized) in relation to stress, zinc, thymulin and IL-2

PERISSIN, Laura;RAPOZZI, Valentina;
1999-01-01

Abstract

Melatonin (MEL) may counteract tumors through a direct oncostatic role. MEL is also an antistress agent with immunoenhancing properties against tumors due to a suppressive role of MEL on corticosterone release. Rotational stress (RS) (spatial disorientation) facilitates metastasis progression in mice. Also, MEL counteracts tumors because of its influence on immune responses via the metabolic zinc pool, which, is reduced in tumors and stress. Zinc is required for normal thymic endocrine activity (i.e. thymulin) and interleukin-2 (IL-2) production. Because in vivo data is still controversial, exogenous MEL treatment (22 days in drinking water) in both intact and pinealectomized (px) mice bearing Lewis lung carcinoma leads to significant decrements of metastasis volume, restoration of the negative crude zinc balance, recovery of thymulin activity and increment of IL-2 exclusively in intact and px tumor bearing mice subjected to RS. Significant inverse correlations are found in both stressed intact and px tumor bearing mice after MEL treatment between zinc and corticosterone (r = 0.78, P < 0.01; r = 0.80, P < 0.01, respectively). Positive correlations between zinc and IL-2 (r = 0.75, P < 0.01; r = 0.73, P < 0.01, respectively) or thymulin (r = 0.75, P < 0.01; r = 0.82, P < 0.01, respectively) are observed in same models of mice. These findings suggest a MEL action to decrease metastasis mediated by a possible interplay between zinc and MEL, via corticosterone, with consequent restoration of thymic efficiency and IL-2 production. MEL as an antistress agent with immunoenhancing properties in cancer deserves further consideration.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11390/877617
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 53
  • ???jsp.display-item.citation.isi??? 43
social impact