The present study reports detailed statistics for velocity and transfer rates of heavy particles dispersed in turbulent boundary layers. Statistics have been extracted from a homogeneous source of data covering a large target parameter space and are used here to analyze the effects of gravity and lift on particle dispersion and deposition in a systematic way. Datasets were obtained performing Direct Numerical Simulation (DNS) of particle-laden turbulent upward/downward flow in a vertical channel. Six values for the particle timescale (the particle Stokes number, St) ranging three orders of magnitude were considered to analyze the deposition process as the controlling mechanism was shifting from turbulent diffusion to inertia-moderated crossing trajectories. For the particle timescales examined, gravity and lift do not influence the qualitative behavior of particles even though velocity profiles and deposition coefficients are modified in a non-monotonic fashion, reaching an optimum for St >= 15. Physical mechanisms for the different behavior are discussed. Raw data and statistics obtained from the present DNS are made available at http://cfd.cineca.it (mirror site: http://158.110.32.35/download/database) and can be used to test simple models and closure equations for multiphase RANS and Large Eddy simulations.

INFLUENCE OF GRAVITY AND LIFT ON PARTICLE VELOCITY STATISTICS AND TRANSFER RATES IN TURBULENT VERTICAL CHANNEL FLOW

MARCHIOLI, Cristian;PICCIOTTO, Maurizio;SOLDATI, Alfredo
2007

Abstract

The present study reports detailed statistics for velocity and transfer rates of heavy particles dispersed in turbulent boundary layers. Statistics have been extracted from a homogeneous source of data covering a large target parameter space and are used here to analyze the effects of gravity and lift on particle dispersion and deposition in a systematic way. Datasets were obtained performing Direct Numerical Simulation (DNS) of particle-laden turbulent upward/downward flow in a vertical channel. Six values for the particle timescale (the particle Stokes number, St) ranging three orders of magnitude were considered to analyze the deposition process as the controlling mechanism was shifting from turbulent diffusion to inertia-moderated crossing trajectories. For the particle timescales examined, gravity and lift do not influence the qualitative behavior of particles even though velocity profiles and deposition coefficients are modified in a non-monotonic fashion, reaching an optimum for St >= 15. Physical mechanisms for the different behavior are discussed. Raw data and statistics obtained from the present DNS are made available at http://cfd.cineca.it (mirror site: http://158.110.32.35/download/database) and can be used to test simple models and closure equations for multiphase RANS and Large Eddy simulations.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11390/877656
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 109
  • ???jsp.display-item.citation.isi??? 104
social impact