The connection between Gauss quadrature rules and the algebraic eigenvalue problem for a Jacobi matrix was first exploited in the now classical paper by Golub and Welsch (Math. Comput. 23(106), 221–230, 1969). From then on many computational problems arising in the construction of (polynomial) Gauss quadrature formulas have been reduced to solving direct and inverse eigenvalue problems for symmetric tridiagonals. Over the last few years (rational) generalizations of the classical Gauss quadrature formulas have been studied, i.e., formulas integrating exactly in spaces of rational functions. This paper wants to illustrate that stable and efficient procedures based on structured numerical linear algebra techniques can also be devised for the solution of the eigenvalue problems arising in the field of rational Gauss quadrature.
Structured eigenvalue problems for rational Gauss quadrature
FASINO, Dario;
2007-01-01
Abstract
The connection between Gauss quadrature rules and the algebraic eigenvalue problem for a Jacobi matrix was first exploited in the now classical paper by Golub and Welsch (Math. Comput. 23(106), 221–230, 1969). From then on many computational problems arising in the construction of (polynomial) Gauss quadrature formulas have been reduced to solving direct and inverse eigenvalue problems for symmetric tridiagonals. Over the last few years (rational) generalizations of the classical Gauss quadrature formulas have been studied, i.e., formulas integrating exactly in spaces of rational functions. This paper wants to illustrate that stable and efficient procedures based on structured numerical linear algebra techniques can also be devised for the solution of the eigenvalue problems arising in the field of rational Gauss quadrature.File | Dimensione | Formato | |
---|---|---|---|
Fasino-Gemignani2007_StructuredEigenvalueProblems.pdf
non disponibili
Descrizione: Articolo
Tipologia:
Versione Editoriale (PDF)
Licenza:
Non pubblico
Dimensione
340.83 kB
Formato
Adobe PDF
|
340.83 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.