We consider a boundary identification problem arising in nondestructive testing of materials. The problem is to recover a part Gamma(1) subset of partial derivative Omega of the boundary of a bounded, planar domain Omega from one Cauchy data pair (u, partial derivative u/partial derivative v) of a harmonic potential u in Omega collected on an accessible boundary subset Gamma(A) subset of partial derivative Omega. We prove Frechet differentiability of a suitably defined forward map, and discuss local uniqueness and Lipschitz stability results for the linearized problem. (C) 2011 Elsevier Inc. All rights reserved.

Linearization of a free boundary problem in corrosion detection

CABIB, Elio;FASINO, Dario;
2011

Abstract

We consider a boundary identification problem arising in nondestructive testing of materials. The problem is to recover a part Gamma(1) subset of partial derivative Omega of the boundary of a bounded, planar domain Omega from one Cauchy data pair (u, partial derivative u/partial derivative v) of a harmonic potential u in Omega collected on an accessible boundary subset Gamma(A) subset of partial derivative Omega. We prove Frechet differentiability of a suitably defined forward map, and discuss local uniqueness and Lipschitz stability results for the linearized problem. (C) 2011 Elsevier Inc. All rights reserved.
File in questo prodotto:
File Dimensione Formato  
YJMAA15628.pdf

non disponibili

Tipologia: Altro materiale allegato
Licenza: Non pubblico
Dimensione 349.57 kB
Formato Adobe PDF
349.57 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11390/878154
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 6
social impact