A simple hydrodynamic injection method is proposed here for microchip CE coupled to electrochemical detection. It is based on the use of a precise syringe pump to push the sample into the microfluidic circuit, accompanied by the application of a secondary electric field to the injection channel, soon after the end of the injection step. In such a way, any counter pressure effect taking place when the sample plug enters the micrometric channel is prevented. Suitable optimization of this secondary electric field enables pushing of sample excess to be avoided and a narrow sample plug during the separation step to be maintained. Best conditions for hydrodynamic injection were achieved injecting catechol as model analyte by pressure with a syringe pump set at a flow rate of 8 mu L/min for 6 s and applying to the injection channel a secondary high voltage of 700 V soon after the injection was completed. The reliability of this injection procedure has been proved by comparing electropherograms found for samples containing either catechol alone or catechol and dopamine together with those recorded under the same conditions by electrokinetic injection. Repeatability, expressed as RSD and estimated for seven replicate injections, turned out to be 2.1% for peak height of catechol used as single analyte and 0.9 and 1.1% for catechol and dopamine respectively, simultaneously injected.
A simple approach to the hydrodynamic injection in microchip electrophoresis with electrochemical detection
DOSSI, Nicolo';TONIOLO, Rosanna;SUSMEL, Sabina;BONTEMPELLI, Gino
2010-01-01
Abstract
A simple hydrodynamic injection method is proposed here for microchip CE coupled to electrochemical detection. It is based on the use of a precise syringe pump to push the sample into the microfluidic circuit, accompanied by the application of a secondary electric field to the injection channel, soon after the end of the injection step. In such a way, any counter pressure effect taking place when the sample plug enters the micrometric channel is prevented. Suitable optimization of this secondary electric field enables pushing of sample excess to be avoided and a narrow sample plug during the separation step to be maintained. Best conditions for hydrodynamic injection were achieved injecting catechol as model analyte by pressure with a syringe pump set at a flow rate of 8 mu L/min for 6 s and applying to the injection channel a secondary high voltage of 700 V soon after the injection was completed. The reliability of this injection procedure has been proved by comparing electropherograms found for samples containing either catechol alone or catechol and dopamine together with those recorded under the same conditions by electrokinetic injection. Repeatability, expressed as RSD and estimated for seven replicate injections, turned out to be 2.1% for peak height of catechol used as single analyte and 0.9 and 1.1% for catechol and dopamine respectively, simultaneously injected.File | Dimensione | Formato | |
---|---|---|---|
Dossi-HD injection.pdf
non disponibili
Tipologia:
Altro materiale allegato
Licenza:
Non pubblico
Dimensione
171.88 kB
Formato
Adobe PDF
|
171.88 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.