In this paper, we propose a trajectory clustering algorithm suited for video surveillance systems. Trajectories are clustered on-line, as the data are collected, and clusters are organized in a tree-like structure that, augmented with probability information, can be used to perform behaviour analysis, since it allows the identification of anomalous events. (c) 2006 Elsevier B.V. All rights reserved.

On-line trajectory clustering for anomalous events detection

PICIARELLI, Claudio;FORESTI, Gian Luca
2006-01-01

Abstract

In this paper, we propose a trajectory clustering algorithm suited for video surveillance systems. Trajectories are clustered on-line, as the data are collected, and clusters are organized in a tree-like structure that, augmented with probability information, can be used to perform behaviour analysis, since it allows the identification of anomalous events. (c) 2006 Elsevier B.V. All rights reserved.
File in questo prodotto:
File Dimensione Formato  
PRL_SI_paper_E_final.pdf

non disponibili

Tipologia: Documento in Post-print
Licenza: Non pubblico
Dimensione 1.12 MB
Formato Adobe PDF
1.12 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11390/878843
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 223
  • ???jsp.display-item.citation.isi??? 164
social impact