We show that any Fermat hypercubic is apolar to a trigonal curve, and vice versa. We show also that the Waring number of the polar hypercubic associated to a tetragonal curve of genus g is at most the ingegral part of 3/2 g − 7/2, and for a large class of them is at most 4/3 g − 3.
Gonality, apolarity and hypercubics
DE POI, Pietro;ZUCCONI, Francesco
2011-01-01
Abstract
We show that any Fermat hypercubic is apolar to a trigonal curve, and vice versa. We show also that the Waring number of the polar hypercubic associated to a tetragonal curve of genus g is at most the ingegral part of 3/2 g − 7/2, and for a large class of them is at most 4/3 g − 3.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
DZ1.pdf
non disponibili
Tipologia:
Altro materiale allegato
Licenza:
Non pubblico
Dimensione
190.17 kB
Formato
Adobe PDF
|
190.17 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.