We prove the existence of chaotic dynamics in a simple periodically perturbed Hamiltonian system of the form x''+q(t)f(x) = 0, where q(t) is a periodic function of constant sign. Applications are given to a pendulum equation with variable length.
Chaotic dynamics in a simple class of Hamiltonian systems with applications to a pendulum with variable length
ZANOLIN, Fabio
2009-01-01
Abstract
We prove the existence of chaotic dynamics in a simple periodically perturbed Hamiltonian system of the form x''+q(t)f(x) = 0, where q(t) is a periodic function of constant sign. Applications are given to a pendulum equation with variable length.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
D-22-0927-0948.pdf
non disponibili
Tipologia:
Altro materiale allegato
Licenza:
Non pubblico
Dimensione
2.7 MB
Formato
Adobe PDF
|
2.7 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.