This paper is concerned with decentralised velocity feedback for the control of vibration on a flexible structure. Previous studies have shown that a direct velocity feedback loop with a collocated force actuator produces a damping action. Multiple velocity feedback control loops thus reduce the vibration and sound radiation of structures at low frequency resonances, where the response is controlled by damping. However, if the control gains are too high, so that the response of the structure at the control point is close to zero, the feedback control loops will pin the panel at the control positions and thus no damping action is generated. Therefore, in order to maximise the active damping effect, the feedback gains have optimum values and the loops need to be properly tuned. In this paper, a numerical investigation is performed to investigate the possibility of self-tuning the feedback control gains to maximise the power absorbed by the control loops and hence maximise the active damping. The tuning principle is first examined for a single feedback loop for different excitation signals. The tuning of multiple control loops is then considered and the implementation of a practical tuning algorithm is discussed.

Self-tuning control systems of decentralised velocity feedback

GARDONIO, Paolo
2010-01-01

Abstract

This paper is concerned with decentralised velocity feedback for the control of vibration on a flexible structure. Previous studies have shown that a direct velocity feedback loop with a collocated force actuator produces a damping action. Multiple velocity feedback control loops thus reduce the vibration and sound radiation of structures at low frequency resonances, where the response is controlled by damping. However, if the control gains are too high, so that the response of the structure at the control point is close to zero, the feedback control loops will pin the panel at the control positions and thus no damping action is generated. Therefore, in order to maximise the active damping effect, the feedback gains have optimum values and the loops need to be properly tuned. In this paper, a numerical investigation is performed to investigate the possibility of self-tuning the feedback control gains to maximise the power absorbed by the control loops and hence maximise the active damping. The tuning principle is first examined for a single feedback loop for different excitation signals. The tuning of multiple control loops is then considered and the implementation of a practical tuning algorithm is discussed.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11390/879032
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 40
  • ???jsp.display-item.citation.isi??? 34
social impact