Thyroid hormones control every cell in the organisms and, as indicated by many hormonal changes in astronauts during and shortly after space missions, its complex regulation may be influenced by gravity. To test in vitro the effects of gravity environment on thyroid, we selected a unique cultured cell system: the FRTL5, a normal follicular thyroid cell strain in continuous culture, originally derived from adult rat thyroids. To establish if modifications of the gravitational environment may interfere with post-receptorial signal transduction mechanisms in normal mammalian cultured cells, following our previous microgravity experiments, we exposed thyrotropin-stimulated and unstimulated FRTL5 cells to hypergravity (5 g and 9 g) in a special low-speed centrifuge. At all thyrotropin doses tested, we found significant increases in terms of cyclic AMP production in FRTL5 thyroid cells. The data here reported correlate well with our previous microgravity data, showing that the FRTL5 cells functionally respond to the variable gravity force in a dose-dependent manner in terms of cAMP production following TSH-stimulation. (C) Societe francaise de biochimie et biologie moleculaire / Elsevier, Paris.

RESPONSE TO THYROTROPIN OF NORMAL THYROID FOLLICULAR CELL STRAIN FTRL5 IN HYPERGRAVITY

PERRELLA, Giuseppina;CURCIO, Francesco;
1999-01-01

Abstract

Thyroid hormones control every cell in the organisms and, as indicated by many hormonal changes in astronauts during and shortly after space missions, its complex regulation may be influenced by gravity. To test in vitro the effects of gravity environment on thyroid, we selected a unique cultured cell system: the FRTL5, a normal follicular thyroid cell strain in continuous culture, originally derived from adult rat thyroids. To establish if modifications of the gravitational environment may interfere with post-receptorial signal transduction mechanisms in normal mammalian cultured cells, following our previous microgravity experiments, we exposed thyrotropin-stimulated and unstimulated FRTL5 cells to hypergravity (5 g and 9 g) in a special low-speed centrifuge. At all thyrotropin doses tested, we found significant increases in terms of cyclic AMP production in FRTL5 thyroid cells. The data here reported correlate well with our previous microgravity data, showing that the FRTL5 cells functionally respond to the variable gravity force in a dose-dependent manner in terms of cAMP production following TSH-stimulation. (C) Societe francaise de biochimie et biologie moleculaire / Elsevier, Paris.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11390/879302
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 10
social impact